Multivariate Bernoulli and Euler polynomials via Lévy processes
نویسندگان
چکیده
By a symbolic method, we introduce multivariate Bernoulli and Euler polynomials as powers of polynomials whose coefficients involve multivariate Lévy processes. Many properties of these polynomials are stated straightforwardly thanks to this representation, which could be easily implemented in any symbolic manipulation system. A very simple relation between these two families of multivariate polynomials is provided. keywords: multivariate moment, multivariate Bernoulli polynomial, multivariate Euler polynomial, multivariate Lévy process, umbral calculus.
منابع مشابه
Multivariate p-Adic Fermionic q-Integral on Zp and Related Multiple Zeta-Type Functions
In 2008, Jang et al. constructed generating functions of the multiple twisted Carlitz’s type qBernoulli polynomials and obtained the distribution relation for them. They also raised the following problem: “are there analytic multiple twisted Carlitz’s type q-zeta functions which interpolate multiple twisted Carlitz’s type q-Euler (Bernoulli) polynomials?” The aim of this paper is to give a part...
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کاملDerivation of identities involving some special polynomials and numbers via generating functions with applications
The current article focus on the ordinary Bernoulli, Euler and Genocchi numbers and polynomials. It introduces a new approach to obtain identities involving these special polynomials and numbers via generating functions. As an application of the new approach, an easy proof for the main result in [6] is given. Relationships between the Genocchi and the Bernoulli polynomials and numbers are obtai...
متن کاملAsymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials
We analyze the asymptotic behavior of the Apostol-Bernoulli polynomials Bn(x;λ) in detail. The starting point is their Fourier series on [0, 1] which, it is shown, remains valid as an asymptotic expansion over compact subsets of the complex plane. This is used to determine explicit estimates on the constants in the approximation, and also to analyze oscillatory phenomena which arise in certain ...
متن کاملSome results on the Apostol-Bernoulli and Apostol-Euler polynomials
The main object of this paper is to investigate the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials. We first establish two relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials. It can be found that many results obtained before are special cases of these two relationships. Moreover, we have a study on the sums of products of the Apostol-Bernoulli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 25 شماره
صفحات -
تاریخ انتشار 2012